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Space-times admitting the complete set of the gauge 
conditions for higher spin fields 
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t Shternberg Astronomical Institute, Moscow 117234, USSR 
$ Space Research Institute, Moscow 117810, USSR 

Received 26 March 1982 

Abstract. We have found and investigated the important class of Riemannian space-times. 
In these and only in these space-times one can impose the complete set of gauge conditions 
on massless fields of higher spins. This set reduces the number of independent field 
variables to two. By this means one can simplify the field equations and interpret the 
solutions to the equations properly. In this paper we consider curvature of these space- 
times, their Petrov classification and the uniqueness of the gauge vector field which is 
used for imposing the complete set of gauge conditions. 

1. Introduction 

It is known that in flat space-time the equations for the electromagnetic field (spin 
l), the spinorial field of spin $ and the weak gravitational field (spin 2) admit the 
group of gauge transformations, which leave the equations invariant. The gauge 
transformations are usually used for imposing the auxiliary (gauge) conditions, which 
connect the different field variables and reduce the number of independent ones to 
two. These conditions are similar for all the fields and they imply that certain 
combinations of field variables A,, . . . vanish. They are: the four-divergence AW,..., = 
0, the trace A:,.. = 0 or the similar algebraic combination y”A,... = 0 in the spinorial 
case and the product of A,,,.. with some fixed vector field U ”, A,,...u ” = 0. For example, 
the gauge conditions for electromagnetic potentials A, given in Minkowskian coordin- 
ates have the form 

A*,, = 0, A,u, = 0. 

One usually chooses the vector U ”  to be time-like and to have the components 
U ”  = (1, 0, 0, 0), which means that A. = 0. In general the vector U ”  can be time-like, 
space-like or null, so we will not restrict ourselves by the time-like U,. In what follows 
we call U, the gauge vector and the mentioned set of gauge conditions a complete set. 

The generally covariant equations for fields embedded in curved space-time 
describe the interaction of these fields with the external gravitational field. These 
equations for the fields mentioned above possess the group of gauge transformations. 

In a curved space-time it is natural to adopt the gauge conditions which are the 
generally covariant version of the conditions adopted in flat space-time. However, it 
turns out that in arbitrary curved space-time one cannot use the gauge freedom for 
imposing the complete set of gauge conditions (Grishchuk and Popova 1981). They 
may be satisfied jointly only in some limited class of space-times. 
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The necessary and sufficient condition for this is the existence of the vector field 
U” which obeys the equations (Grishchuk and Popova 1981) 

uCriv = u,av + bg,,., 

b , ,  - ba, = cu,, 

where a ,  is an arbitrary vector b and c are arbitrary scalars. In some cases equation 
( 1 )  exhausts all the restrictions on a space-time metric, so we shall first consider those 
space-times which admit the vector field ( l ) ,  and later we shall take into account the 
additional restriction ( 2 ) .  

Let us start by indicating some properties of the vector field U,. According to 
equation ( 1 )  u,,:,u” is proportional to U,, which means that the vector field U, defines 
the geodesic congruence. Further, from the same equation it follows that 

U A U [ w : v ] +  u,u[v;A]+ U&[A;,] = 0, 

hence, the vector field U *  differs from a gradient vector field at most by a scalar factor 
(Petrov 1969). 

Let us introduce the norm of U” : u,u = f p . By differentiating this equality and 
by taking into account equation ( 1 )  one obtains 

p , ”  = 2p2av f 2bu,, 

which leads to b = 0 if p = 0 and 

2 

2 

a ,  = (In P I , ”  T b u ,  

if p # 0. It is convenient to carry out the subsequent investigation of equations ( 1 )  
and ( 2 )  separately for two cases: for null U, (u,u@ = 0) and non-null U, (u,u # 0). 

2. Non-null gauge vector 

For the vector u p  with unit norm 

U, = ( l / P ) U , ,  

U,;“ =P[g,” - - ( l / X ) ~ , U ” I ,  

u,uF ‘ X  = f 1 ,  

equation ( 1 )  takes the form 

where p = b / p  is an arbitrary scalar, Equation ( 2 )  gives the additional restriction 

(3) 

p , ,  = ( l / X ) ( P . a U “ ) U , .  (4) 

First, let us show that the non-null vector field ( 3 )  may only exist either in flat 
space-time or in a Ricci non-flat space-time (I?,” # 0). The integrability conditions 
for equations (3) have the form 
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In a vacuum space-time (Rap = 0) equation (6) would give 

2 
p.n = - ( ~ / x ) P  ua, 

which would result in the relation uPRPlLU, = 0. It is known (Zakharov 1972) that if 
this relation holds along with R,, = 0, then ( u ~ u ~ ) R ~ , , ,  = 0 and hence the space-time 
must be flat since the vector un is non-null. 

Let us consider the Riemann and Ricci tensors of space-time admitting a gradient 
vector field (such as the vector field (3), U,;,, --vu;& = 0). These tensors can be written 
down in covariant form as follows. 

Introduce the metric tensor yap of the three-dimensional sections orthogonal to 
the congruence U, : 

Yap = gap - ( l / X ) W p .  

The tensor y: = 8: - (l/x)v,uP plays the role of a projection operator. By multiplying 
an object with the projection operator one can distinguish the components of the 
object which are orthogonal to U,. We shall denote the quantities belonging to the 
orthogonal sections by script letters. Then for the Cristoffel symbols and for the 
Riemann tensor one has respectively 

Y ;Y ;Y = 7&, (7) 

(8) P . ~ A P  C L ~ A P  
YolYPYvY&rrvAp =%aCrpyS + ( l / X ) Y n Y P Y v Y S ( u , ; ~ U u ; A  - U ~ ~ ; h v v ; p ) .  

(For the gradient vector vu equation (8) establishes a particular case of the general 
relation derived in Zel’manov (1976).) 

If equation (4) is satisfied together with equation (3), then one can introduce the 
vector field w ,  which differs from U, by a scalar factor and such that equations (3) 
and (4) take the form 

w,;u = qg,u, q,n = ( l / e ) ( q , , w W ) w ,  =dw, ,  (9) 

where w,wp = E  and d is a scalar. A space-time which admits the vector field w, 
restricted by equation (9) is called equidistant (Sinukov 1979). For these space-times 
the relation (8) takes the form 

R w v p u  = 9 , u p  + ( d / E  )(gupwswu - guuw,wp 

+ g,uw,wp -g,pwvwu) + (q2/4(YuPY,u - Y W P Y U U ) ,  (10) 

where equation (9) has been used. From equation (10) it follows that 

The tensors 92WvAp and ’iEfiV determine the geometry of sections orthogonal to w, 
and they are unrestricted. 

Equation (11) gives certain limitations on the general structure of the energy- 
momentum tensor, which could govern the equidistant space-time according to the 
Einstein equations. 

Let us give the Petrov classification of the equidistant space-times. It can be given 
fairly completely even without using the exact form of the metric tensor. Multiply 
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equation (10) and equation (11)  by w e .  One gets respectively 

w "R ,ypu = d(gvpwu - g v U W p ) ,  

w 'RWv = - 3dw,. 

(Equation (12) can also be derived as the integrability condition for equation (9).) 
By using the expression for the Weyl tensor and taking into account equations (12), 
(1  3), one finds 

w@CwuPu = t ( w U R v p  - W J ? , , ~ ) - - $ ( ~  +$R)(wugvp -wpgvu).  (14) 
It is important to notice that if the vector 5" is an eigenvector of the Ricci tensort 
S@R,@ = A&, then the simple bivector W"' = w"(@ - w@["  is an eigen-bivector of the 
Weyl tensor. Indeed, equation (14) yields 

WFvC,ypu = AWpu, A = d + $ R - A .  (15) 
According to equation (13), one of the eigenvectors of R,,, and moreover ,the real 
one, is w'I. 

Let w w  be a time-like vector. Then the other eigenvectors, orthogonal to w " ,  
must be space-like and also real (see, for example, Landau and Lifshitz 1971). Since 
the tensor 3," is arbitrary it has, in general, three different space-like eigenvectors. 

Denote them by 5 a (a = 1,2 ,3) .  Then Wup are simple and real eigen-bivectors 
of the Weyl tensor. Moreover, the eigenvalues A satisfy equation C",=, A = 0, which 
follows from equation (15)  and from the fact that for the non-null eigenvectors of 
R,, the following equality holds: R =E',=, A + A where A = -3d.  Thus, in the 
general case we have three different real eigen-bivectors of the Weyl tensor, which 
means that the metric belongs to type I with the real eigenvalues. If two or three 
eigenvalues A coincide, then the type of the space-time reduces to type D or type 
0. The latter case takes place if the Ricci tensor simplifies to the form 

( a )  ( a  1 

( a )  ( a )  

( a )  (0) (0) 

( a )  

R , ,  = aw,w, + P g W Y .  

If w +  is a space-like vector then the eigenvectors of the Ricci tensor can be real, 
complex or null. This means that the eigen-bivectors of the Weyl tensor can be 
complex conjugate or null. According to this, among the equidistant space-times 
appear representatives of types 11, N and 111. 

Now let us consider the problem of uniqueness of the gauge vector w,. First, we 
shall show that there exists only one gauge vector w,  if d #constant. Suppose that 
there are two different (non-collinear) vectors w" and m", fl' # a w P .  For 8", as 
well as for w ', equation (9) is valid and the equation similar to equation (12) should 
also be satisfied: 

*@RWvpu = 6 ( g v p m u  -guUap). (16) 

Multiplying equation (16) by wF and multiplying equation (12) by i i rw  and then 
adding one to another, one gets the relation d = 6, It now follows from the relation 
q,up - q,pa = 0 = ij,olp -q,@- that either G W  is proportional to w @, which contradicts 
the initial suggestion, or d = constant. 

In the case d = constant the number of different gauge vectors can be larger than 
one (this is obvious if d = 0) .  

t Remember that R,, # 0 except for the trivial case R uvofi = 0.  
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3. Null gauge vector 

Since in this case b = 0, the equality ( 2 )  gives c = O  and does not bring any new 
restrictions on the gauge vector. The only restriction is equation ( 1 ) .  Introduce 
U, = (exp &)e,  where = 0. By alternating indices CL and Y in equation ( 1 )  one sees 
that a ,  -a,,, is proportional to U , .  This allows one to rewrite equation ( 1 )  in the form 

e,;” = me,e,, (17)  

where m is an arbitrary scalar. The integrability conditions for equation (17)  are 

ewR.,ypp = e,(m,,ep -m,pea).  
Equation (18)  leads to 

e’”R,, = (m,,ea)eY, 

so that the vector e” is an eigenvector of the Ricci tensor. 
In order to write down the formulae for the Riemann and Ricci tensors of a 

space-time subjected to equation (17) ,  we will need the relation between the Riemann 
tensor of the space-time and the Riemann tensor of the two-dimensional space VZ 
orthogonal to the two given geodesic congruences. Let ncL and t p  be time-like and 
space-like gradient vectors, respectively. We choose them to be orthogonal and have 
unit norms: 

n,t = 0, n,nW = 1 ,  t,tw = - 1 .  

Applying equations ( 7 )  and (8) twice, one obtains 
ILL I Y  I A  I P  I W  I Y  I A  I P  

y a  y p y y  Y S  R p ~ p  =%~)&P,s +?a Y P Y ~  Y S  ( t v ; ~ f ~ ; p - f ~ ; ~ f v ; p - n v ; ~ n ~ ; p + n , ; ~ n w ; p ) ,  (19)  
where 

y r  = S i - n a n p + t a t p ,  

and %&s is the Riemann tensor of the two-dimensional space. For every V, the 
following relation is valid: 

%e&,,, =Xw(Y&yY&S -Y&SY&y).  

e ,  = ( l / J Z ) ( n * + t @ ) ,  

Now introduce e @  and 2‘ as follows: 

ZF = ( l / J Z ) ( n w  - t w ) .  

Let the null vector e ,  satisfy equation (17) .  Then from equation (19)  one obtains 

R = X ( Y  LAY Lp - Y LPy L A )  + E“ (e,R U v ~ p  - e J  a p h p  + eAR Up,v -e$ U ~ , v )  

-U - p  - e  e (ewe$ p v p ~  - e,eAR a v p p  + e A R  swop - e&$ a & P A ) *  

As a consequence of this equation one has 

R,,  = e,AY + e A ,  + XgPY, 

A,  = R,ZV -~e,RaBt7aEP -XZ,, 
X = (Ay - m,,)e ”. 

where 
1 
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Equation (20) determines the structure of the energy-momentum tensor which 

Let us give the Petrov classification of the space-time under consideration. By 
can govern the dynamics of space-time. 

using equations (18) and (20) one gets 

e"CaO,s = e p  [e,(m.s -A) - es (m,? -&%)I + $(esgO, - e,gps)(m,, -A, )e  

e"eYCaOYs = Segesea(A, -2m,,) = -d?epes, 

e ,e yCaOv[seA] = 0.  

1 

(21) 1 1 

It follows from equation (21) that the space-time cannot belong to type I. A 
further corollary is that if R f 0 the space-time must belong to type I1 or type D. It 
follows from equation (21) that the eigenvalues (a + ip)1,2,3 in cases I1 and D look like 

1 1 
a1 = --a, a2 = a3 =ER, pi =p2=p3 = 0, 

when R = 0, and as a special case in vacuum space-times (RFV = 0) the Weyl tensor 
can be of types 111, N and 0 only. (It should be emphasised that the covariantly 
constant vector field e,  may exist only in space-times of types N and 0.) 

Now let us turn to the problem of the uniqueness of the gauge vector e,. It is 
seen from equation (21) that e ,  is the degenerate null eigenvector of the Weyl tensor. 
Because of that the vector e,  is unique except, may be, for the space-times of type 
D where there exist two degenerate null vectors and type 0 where there exist many 
gauge vectors. 
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